3.50 \(\int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=85 \[ \frac {2 C \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{b^2 d}+\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \]

[Out]

2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b/d/cos(d*x+c)^(1/2)
/(b*sec(d*x+c))^(1/2)+2*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)
)*cos(d*x+c)^(1/2)*(b*sec(d*x+c))^(1/2)/b^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {4047, 3771, 2639, 12, 16, 2641} \[ \frac {2 C \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{b^2 d}+\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(3/2),x]

[Out]

(2*B*EllipticE[(c + d*x)/2, 2])/(b*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*C*Sqrt[Cos[c + d*x]]*Ellipt
icF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(b^2*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps

\begin {align*} \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx &=\frac {B \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx}{b}+\int \frac {C \sec ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx\\ &=C \int \frac {\sec ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx+\frac {B \int \sqrt {\cos (c+d x)} \, dx}{b \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\\ &=\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {C \int \sqrt {b \sec (c+d x)} \, dx}{b^2}\\ &=\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {\left (C \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{b^2}\\ &=\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 C \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{b^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 57, normalized size = 0.67 \[ \frac {2 \left (B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+C F\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{b d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(3/2),x]

[Out]

(2*(B*EllipticE[(c + d*x)/2, 2] + C*EllipticF[(c + d*x)/2, 2]))/(b*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (C \sec \left (d x + c\right ) + B\right )} \sqrt {b \sec \left (d x + c\right )}}{b^{2} \sec \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c) + B)*sqrt(b*sec(d*x + c))/(b^2*sec(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\left (b \sec \left (d x + c\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/(b*sec(d*x + c))^(3/2), x)

________________________________________________________________________________________

maple [C]  time = 1.67, size = 450, normalized size = 5.29 \[ \frac {2 i B \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right )-2 i B \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \cos \left (d x +c \right )+2 i C \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+2 i B \sin \left (d x +c \right ) \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-2 i B \sin \left (d x +c \right ) \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+2 i C \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-2 B \left (\cos ^{2}\left (d x +c \right )\right )+2 B \cos \left (d x +c \right )}{d \cos \left (d x +c \right )^{2} \left (\frac {b}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sin \left (d x +c \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x)

[Out]

2/d*(I*B*cos(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin
(d*x+c),I)*sin(d*x+c)-I*B*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*sin(d*x+c)*Ell
ipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)+I*C*sin(d*x+c)*cos(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)+I*B*sin(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),
I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-I*B*sin(d*x+c)*EllipticE(I*(-1+cos(d*x+c))/sin(d
*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+I*C*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(c
os(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)-B*cos(d*x+c)^2+B*cos(d*x+c))/cos(d*x
+c)^2/(b/cos(d*x+c))^(3/2)/sin(d*x+c)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\left (b \sec \left (d x + c\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/(b*sec(d*x + c))^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(3/2),x)

[Out]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(3/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)/(b*sec(c + d*x))**(3/2), x)

________________________________________________________________________________________